Study Illustrates Application of Lithium-Metal Anodes for Nonaqueous Secondary Batteries

There is a need for an energy-dense battery system in society, and as a battery with high energy density, lithium metal batteries have drawn a great deal of attention.

Study Illustrates Application of Lithium-Metal Anodes for Nonaqueous Secondary Batteries.
稳定锂金属粉(SLMP)的性能性能的雷达图,稳定锂金属阳极(SLMA),沉积的锂金属阳极(DLMA),复合锂 - 金属阳极(CLMA)和无阳极 - 阳极 - 金属 - 金属亚元素(AFLMA)。图片来源:©科学中国出版社。亚博老虎机网登录

Lithium metal electrode holds a low electrode potential and could express a capacity that is as high as 3860 mAh g-1。lithium金属阳极与高能密度一起显示出很大的应用潜力。

But there are difficulties associated with improving practical lithium metal batteries as the lithium metal anode in lithium metal batteries is highly reactive which can result in safety implications.

在Fudan大学,小东和Yongyao Xia等。reported a review article in the国家科学评论亚博老虎机网登录

该研究考虑了实用锂金属阳极的失败机制和当前的研究,从而为未来提供了研究。

通常,锂金属的使用效率低于锂金属电池,这大大降低了其寿命。锂金属具有高反应性,并且对空气和水分也很敏感,从而使它们失败并引起安全问题。

科学家分析了锂金属阳极的两种显着故障模式(短路和容量损失)。锂树突是造成短路的主要原因:诸如非均匀锂离子浓度分布之类的条件将简化锂树突的生长,锂树突的生长可能通过分离器进入并导致短路。

Primarily, the capacity decay comes from irreversible reactions of lithium metal with lithium metal dusting and electrolytes. Due to lithium metal’s high reactivity, a certain amount of active lithium metal would respond with electrolyte and result in capacity degradation.

同时,在充电和排放过程中撒锂金属将增加电池的消耗能力和阻抗。在发现了锂金属阳极的两种重大破坏机制后,科学家可以以更具针对性的方式进行研究,并工程师更实用的锂金属阳极。

Later, scientists reviewed and examined these targeted works. As per the making methods and equivalent applications, five categories of lithium anodes are suggested: stabilized lithium-metal powder anode (SLMP), deposited lithium-metal anode (DLMA), composite lithium-metal anode (CLMA), lithium-metal anode (SLMA) and anode-free lithium-metal anode (AFLMA).

Opportunities for the practical application of such anodes are evaluated by comparing their pros and cons. SLMP can ably compensate for the irreversible capacity of commercial anodes like graphite; SLMA can efficiently prevent the dusting of lithium metal and redress the dendrites.

DLMA可以很好地调节阳极界面的存在。但是,制作很复杂。CLMA可以开发可靠的电极结构,避免复杂的准备过程。Aflma利用铜作为阳极,简化了电池的制造过程。

果断地,SLMA可以被认为是五个阳极中最有希望,最实用的锂金属阳极。SLMP可以是能量密集锂金属电池的主要候选者。

尽管目前的研究已对锂金属阳极进行了广泛的分析,但目前的技术和实用锂金属阳极之间仍然存在很大的差距。

随着前沿特征和制造技术的发展的增长,将以更精细的方式分析锂金属电池的机制,并增强制备技术。牢记这一点,社会与安全和能量密集的锂金属电池的出现并不遥远,这可能导致能源革命。

Journal Reference:

Li,P。,。(2022)锂金属阳极实际应用非水的次级电池的途径。国家科学评论亚博老虎机网登录doi.org/10.1093/nsr/NWAC031

来源:https://www.scichina.com/

Tell Us What You Think

您是否有评论,更新或想添加到此新闻故事中的任何内容?

Leave your feedback
您的评论类型
Submit