2017年1月25日
可以在自然世界中观察到粘合机制,如壁虎和其他动物在天花板上倒挂的动物。这些自然机制有几个好处:例如,它们永远具有强烈的粘合剂 - 并且没有任何残基或胶水。
Researchers at基尔大学are exploring ways to artificially develop these mechanisms. An interdisciplinary research team from Materials Science, Biology, and Chemistry have successfully developed a bio-inspired adhesive material that can be manipulated remotely using UV light.
这种方法使得可以精确地移动微距离对象。这些发现可能用于行业,机器人技术和医疗技术领域的应用。总部位于KIEL的研究团队的结果于1月18日发表在《科学杂志科学机器人技术》上。亚博老虎机网登录
在自然界中,诸如肌肉运动之类的机械刺激确保动物的腿粘在表面上,然后可以再次脱离。Kiel的研究人员正在使用光来操纵其人工粘合机制,这些机制是基于自然界中的模型而构建的。
The advantage of light is that it can be used very precisely. It is reversible, so it can be switched on and off again, and that very quickly.
基尔大学Emre Kizilkan
Kilzikan is from the Functional Morphology and Biomechanics research group under Professor Stanislav Gorb at the Zoological Institute.
该团队首先开发了一种弹性多孔材料(LCE,液晶弹性体),并在用紫外线照明时弯曲。由于材料的特殊分子结构,这是可能的。在开发阶段,他们意识到材料的多孔越多,弯曲的次数就越多,研究人员使用了这一事实。
Due to their structures, porous materials can be very easily incorporated to other materials.So we tested what happens when we combined the elastic material, which reacts well to light, with a bio-inspired material that has good adhesive properties.
EmreKizilkan, Kiel University
The outcome is an intelligent composite material with adhesion feature that can be controlled using light. The surface is made up of mushroom-shaped adhesive microstructures, similar to ones found on the feet of certain species of beetle. Flat or 3D small elements such as glass spheres or microscope slides can attach and be picked up.
The material bends when the composite material is illuminated using UV light. Due to the continually bending of the surface, adhesive elements detach from the object, until it finally drops down again.
我们能够证明我们的新材料可用于运输对象。此外,我们证明了运输可以通过微层上的光线来精确控制。
EmreKizilkan, Kiel University
Gorb adds:可以说:“我们使用光作为遥控器。我们的生物启发的粘合剂材料也不会在物体上留下任何残留物。”
The research team’s findings are therefore particularly interesting when developing micro computer chips or sensitive sensors. They have to be produced in an environment that is protected from external impurities and influences, such as Kiel University’s cleanroom.“In the long term, we would like to use the new material to develop micro-robots which can be controlled by light to move forwards and climb walls,”is Professor Gorb’s insight.