2010年12月27日GydF4y2Ba
R.Vijayalakshmi and K.V. Rajendran
版权所有技术;被许可人AZOM.com PTY Ltd.GydF4y2Ba
This is an AZo Open Access Rewards System (AZo-OARS) article distributed under the terms of the AZo-OARS//www.washintong.com/oars.aspwhich permits unrestricted use provided the original work is properly cited but is limited to non-commercial distribution and reproduction.
Azojomo(ISSN 1833-122X)2010年12月6日GydF4y2Ba
涵盖了主题GydF4y2Ba
抽象的GydF4y2Ba
关键字GydF4y2Ba
Introduction
Experimental Procedure
Results and Discussion
结论GydF4y2Ba
致谢GydF4y2Ba
References
联系方式GydF4y2Ba
抽象的GydF4y2Ba
TIOGydF4y2Ba2GydF4y2Ba平均直径为8-18nm的纳米晶体粉已通过溶胶 - 胶合方法成功地合成了使用不同表面活性剂西酰基三甲基铵溴化铵(CTAB),聚乙二醇(PEG)和十二烷基硫酸钠(SDS)。合成的TIOGydF4y2Ba2GydF4y2Ba使用X射线衍射(XRD),UV吸附光谱,扫描电子显微镜(SEM)和透射电子显微镜(TEM)来表征纳米植物。XRD模式表明高晶体剖腹酶TiOGydF4y2Ba2GydF4y2Ba纳米颗粒已yabo214合成。TIO的球形形态GydF4y2Ba2GydF4y2Ba在SEM和yabo214TEM分析中观察到纳米颗粒。紫外线吸收边缘表现出蓝移,可以归因于量子限制效应。TIO的可能生长机制GydF4y2Ba2GydF4y2Baare discussed.
关键字GydF4y2Ba
纳米颗粒,yabo214晶粒尺寸,表面积,粉末GydF4y2Ba
Introduction
半导体纳米颗粒已经从实验和理论观点进行yabo214了广泛的研究,这是由于它们在太阳能保护,光催化和光电片领域的潜在应用[1-4]。金属氧化物纳米颗粒在以涂层形式的各yabo214种底物的选择性表面修饰中起重要作用。二氧化钛(Tio)GydF4y2Ba2GydF4y2Ba)是直接带隙N型半导体(EGydF4y2BaGGydF4y2Ba= 3.2 eV),是许多应用中使用的最战略材料,例如光催化剂,太阳能电池,透明电极和紫外线激光二极管等[5-7]。最近的研究表明,半导体材料的许多基本物理或化学特性在很大程度上取决于材料的大小和形态。亚博网站下载有几种物理和化学合成方法可用于制造该材料,包括溶胶 - 凝胶[8],CVD [9],微乳液[10],水热过程[11]等对化学计量组合物的最广泛使用,更好地控制合成的途径,更好的均匀性,高纯度粉末的产生以及用于制备纳米材料的成本效益方法。亚博网站下载在这项研究中,我们报告了TIO的合成GydF4y2Ba2GydF4y2Ba纳米颗粒以yabo214及表面活性剂(例如CTAB(阳离子),PEG(非离子)和SDS(阴离子)对大小,形态和光学性质的影响,首次通过SOL-GEL过程讨论。GydF4y2Ba
Experimental Procedure
Sol-Gel合成TIOGydF4y2Ba2GydF4y2Bawas obtained from Titanium (IV) isopropoxide (TTIP) was dissolved in absolute ethanol and distilled water was added to the solution in terms of a molar ratio of Ti: H2GydF4y2BaO=1:4. Nitric acid was used to adjust the pH and for restrain the hydrolysis process of the solution. The above solution was stirred vigorously until a clear solution was obtained, then 0.01 mol of cetyltrimethyl ammonium bromide (CTAB) was added to the above solution. After stirring the sol was aged for 24 h, it was transformed into gels. In order to obtain nanoparticles, the gels were dried under 120°C for 2 h to evaporate water and organic material to the maximum extent. Then the dry gels were ground and sintered at 450°C to obtain desired TiO2GydF4y2Ba纳米晶粉。遵循相同的程序进行TIO制备GydF4y2Ba2GydF4y2Ba使用聚乙二yabo214醇(PEG)和十二烷基硫酸钠(SDS)的纳米颗粒。GydF4y2Ba
The prepared samples were subjected to different characterization including X-ray diffraction (XRD), UV-Vis absorption spectroscopy (UV), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The crystalline structure of materials was analyzed by XRD (XPERT PRO with CuKα radiation λ=1.5406 Å) at scanning speed of 2°/min from 20° to 80°. The surface morphology was analyzed by SEM (JEOL, JSM-67001). TEM was carried out using a model JEOL-2010 microscope. The absorption spectra were carried out in the range of 200 - 800 nm by using SHIMDZU UV 310PC.
Results and Discussion
图。1。显示AS合成TIO的XRD模式GydF4y2Ba2GydF4y2Ba在450°C下,它们表现出不同的巨大峰,易于区分。将峰索引为(101),(004),(200),(105),(211),(204),(220),并且与报道的TIO值非常吻合GydF4y2Ba2GydF4y2Ba(JCPD 21-1272)。由于钛金属或表面活性剂,在XRD模式中未观察到额外的峰,这意味着形成了氧化钛的纯和单相。从图1(a)(ctab)中,注意到样品的峰强度明显高于图1(b)(b)(peg)和1(c)(c)(sds)中的强度。较大的粒径。使用Debye Scherrer的配方奶粉Tio的结晶尺寸GydF4y2Ba2GydF4y2Ba可以确定纳yabo214米颗粒[12]。获得的结果在表1中列出。GydF4y2Ba
TIO的吸收光谱GydF4y2Ba2GydF4y2Ba从不同的表面活性剂中获得的图2显示了。在吸收带边缘的蓝移,这可以归因于半导体的众所周知的量子尺寸效应[13]。作为纳米颗粒的小尺寸,导致电荷载体波函数的空间限制,yabo214这被称为量子尺寸效应。量子大小的影响不仅包括吸收边缘和激子能量的蓝移,而且还涵盖了激子缔合强度和结合能的增加[14]。另外,从散装TIO的吸收位置的蓝移GydF4y2Ba2GydF4y2Ba, the absorption onsets of the present samples could be assigned to the direct transition of electron in TiO2GydF4y2Bananocrystals. The absorption band edges observed at 310, 325 and 349 nm indicate a blue shift from that of the bulk TiO2GydF4y2Ba((385 nm). A prominent blue shift occurred in the case of the CTAB samples (Fig. 2(a)) when compared to that of PEG and SDS (Fig. 2(b) and 2(c)).
图1。GydF4y2BaXRD patterns of the as-prepared samples
a) CTAB TiO2GydF4y2Ba, b) PEG TiO2GydF4y2Ba,c)SDS TIOGydF4y2Ba2GydF4y2Ba
Table 1.不同表面活性剂的大小和形态GydF4y2Ba
Surfactant |
粒度 / nmGydF4y2Ba |
形态学GydF4y2Ba |
ctabGydF4y2Ba |
8-10 |
球形GydF4y2Ba |
钉GydF4y2Ba |
11GydF4y2Ba |
球形GydF4y2Ba |
SDSGydF4y2Ba |
12-18 |
球形GydF4y2Ba |
图3(a) - (c)显示了使用CTAB,PEG和SDS获得的样品的表面形态。它表明准备好的TioGydF4y2Ba2GydF4y2Ba使用不同表yabo214面活性剂的纳米颗粒是球形的,平均晶体大小约为8-20 nm。在阳离子表面活性剂CTAB的情况下,由于静电相互作用而导致的低聚,高色散和均匀的晶体大小发生在CTA之间GydF4y2Ba+GydF4y2Ba阳离子和ti(哦)GydF4y2Ba6GydF4y2Ba2GydF4y2Ba- 阴离子,阳离子CTAGydF4y2Ba+GydF4y2Ba将反离子ti(OH)的聚集体凝结成骨料GydF4y2Ba6GydF4y2Ba2GydF4y2Ba- 在头部组之间的接口中相互关联以形成CTAGydF4y2Ba+GydF4y2Ba-ti(哦)GydF4y2Ba6GydF4y2Ba2GydF4y2Ba- 一对。使用PEG,是非离子表面活性剂TIOGydF4y2Ba2GydF4y2Baformation was not possible due to the electrostatic interaction and was due to weak Van Der Wall’s interaction, and the acidic solution could provide protons binding to PEG molecules via hydrogen bonding [15]. In the case of anionic surfactant SDS, assisted TiO2GydF4y2Bananoparticles there were no distinct changes in the morphology.
CTAB,PEG和SDS的TEM图像辅助TIOGydF4y2Ba2GydF4y2Ba产物如图4(a) - (c)所示。如图4(a)所示,很明显,CTAB辅助产品由直径范围为8-12 nm的球形纳米颗粒组成。yabo214大多数纳米颗粒都很好地分开了,尽管yabo214其中一些部分是汇总的。在我们的研究中,表面活性剂可能充当软模板,我们认为,通过我们的方法制造的纳米颗粒主要通过奥斯瓦尔德成熟机制而生长。yabo214最初,许多具有不同尺寸的纳米颗粒在溶液中yabo214出现在反应程序中,由于表面自由能较高,其尺寸较大的纳米粒子以较小的纳米粒子的成本增长[16]。TioGydF4y2Ba2GydF4y2Ba颗yabo214粒通过极力向后扩散和聚集,然后珍珠项链聚集进一步重结晶以形成纳米颗粒。从图4(b)中指出,该产物主要由平均粒径约11 nm的聚集纳米颗粒组成,与Wang等[17]报道的值相对较小。yabo214图4(c)表现出略微拉长的球形颗粒,尺寸范围为12-18 nm。yabo214此外,从TEM模式获得的所有样品的粒径与从Scherrer方程计算的样品相当。粒子形成是一个非常复杂的过程。它涉及成核,生长和凝结,絮凝,所有这些都可能受到表面活性剂组件的显着影响。表面活性剂的添加会影响颗粒的生长,凝结和絮凝。因此,表面活性剂在制备其他金属氧化物纳米颗粒中起重要作用。yabo214此外,在有关TIO形成的深入研究中GydF4y2Ba2GydF4y2Ba正在进行纳yabo214米颗粒以扩展我们的理解。GydF4y2Ba
The associated SAED pattern (Fig.5) taken from the particle shown in Fig. 4(a) can be indexed as a tetragonal anatase TiO2GydF4y2Ba单晶。前六个环被分配给(101),(004),(200),(005),(211),(204)的解剖酶相。GydF4y2Ba
图2。GydF4y2BaDRS UV-absorption spectra of different surfactant TiO2GydF4y2Ba
图3。GydF4y2Ba不同表面活性剂TIO的SEM显微照片GydF4y2Ba2GydF4y2Ba
a)ctab sem tioGydF4y2Ba2GydF4y2Ba
b)PEG SEM TIOGydF4y2Ba2GydF4y2Ba
c)SDS SEM TIOGydF4y2Ba2GydF4y2Ba
Figure 4.不同表面活性剂TIO的TEM显微照片GydF4y2Ba2GydF4y2Ba
(a)ctab tem tioGydF4y2Ba2GydF4y2Ba
(b)PEG TEM TIOGydF4y2Ba2GydF4y2Ba
(c)SDS TEM TIOGydF4y2Ba2GydF4y2Ba
图5。GydF4y2BaSAED pattern of the CTAB surfactant TiO2GydF4y2Ba
结论GydF4y2Ba
TIOGydF4y2Ba2GydF4y2Ba通过溶胶 yabo214- 凝胶法有效地合成了具有从8-20nm的颗粒大小的纳米颗粒。XRD结果表明TIOGydF4y2Ba2GydF4y2Bananoparticles were single crystalline with tetragonal anatase phase. SEM and TEM images of TiO2GydF4y2Ba使用不同表yabo214面活性剂的纳米颗粒分布良好,均匀且球形,晶体尺寸约为8-18nm。在所有情况下(310、325、349 nm)的蓝移均发生,但观察到CTAB辅助样品的显着偏移。从上面的讨论可以得出结论,GydF4y2Ba2GydF4y2Ba与用PEGyabo214 A非离子表面活性剂和SDS制备的样品相比,使用CTAB A阳离子表面活性剂制备的纳米颗粒显示出较小的粒径。我们的结果表明,表面活性剂对减少纳米虫的大小具有很大的影响。这种方便的合成策略可以用作制备其他金属氧化物纳米颗粒的一般方法。yabo214GydF4y2Ba
致谢GydF4y2Ba
作者感谢大学赠款委员会(UGC)的财政支持。GydF4y2Ba
References
1。Y.Bessekhouad, D.Robert and J.V.Weber, “Preparation of TiO2GydF4y2Bananoparticles by sol-gel route”, International Journal of Photoenergy, 5 (2003) 153-158.
2. T.Sugimoto,X.Zhou和A.Muramatsu,“均匀剖果TIO的合成GydF4y2Ba2GydF4y2Bananoparticles by sol-gel method”, Journal of Colloid and Interface Science, 259 (2003) 43-52.
3. N.Uekawa,J.Kajiwara,K.Kakegawa和Y.Sasaki,“多孔催化剂TIO的低温合成和表征GydF4y2Ba2GydF4y2Ba纳米颗粒”yabo214,《胶体和界面科学杂志》,250(2002)285-290。亚博老虎机网登录GydF4y2Ba
4。S.Ruan, F.Wu, T.Zhang, W.Gao, B.Xu and M.Zhao, “Surface state studies of TiO2GydF4y2Ba纳米颗粒和yabo214甲基水溶液中甲基的光催化降解GydF4y2Ba2GydF4y2Ba分散”,材料化学与物理学,6亚博网站下载9(2001)7-9。GydF4y2Ba
5. W.Chengyu,S.Huamei,T.Ying,Y.Tongsuo和Z.Guowu,“ CDS化合物的特性和形态TioGydF4y2Ba2GydF4y2Ba可见光光催化纳米膜涂在玻璃表面上”,分离纯化技术,32(2003)357-362。GydF4y2Ba
6. J.Aguado,R.Van Griekan,M.Jose,L.Munoz和J.Marugan,“对TIO的合成,表征和活性的全面研究GydF4y2Ba2GydF4y2Ba/sioGydF4y2Ba2GydF4y2Baphotocatalysts”, Applied catalysis A: General, 312 (2006) 202-212.
7. J.L.H.Gau,Y-M.Lin,A-K.li,W-F.Su,K-S.chang,S.L-C.HSU和T-L.Li,“透明的高折射率纳米复合薄膜”,材料字母,61(2007)2908---2908---亚博网站下载2910。GydF4y2Ba
8. Kaifeng Yu,Jingzhe Zhao,Yupeng Guo,Xuefeng Ding,Hari-Bala,Yanhua Liu和Zichen Wang,“ Sol-Gel合成和尿液纳米酶纳米酶纳米型乳晶的水热处理,Natanium n二酰胺的含量”。亚博网站下载-2518。GydF4y2Ba
9. Anli Yang and Zuolin Cui, “ZnO layer and tubular structures synthesized by a simple chemical solution route”, Materials Letters, 60 (2006) 2403-2405.
10. W.Zhou,Q.Cao和S.Tang,“对纳米tio大小的影响GydF4y2Ba2GydF4y2Ba用溶剂乳液法制备的粉末”,粉末技术,168(2006)32-36。GydF4y2Ba
11. Y.V.Kolen’ko,V.D.Maximov,A.A.Burukhin,V.A.Muhanov和B.R. Churagulov,“ Zro的合成GydF4y2Ba2GydF4y2Ba和TioGydF4y2Ba2GydF4y2Bananocrystalline powders by hydrothermal process”, Materials science & engineering C, 23 (2003) 1033-1038.
12。J.Liqiang, S.Xiaojun, X.Baifu, W.Baigi, C.Weimin and F.Honggang, “The preparation and characterization of La doped TiO2GydF4y2Bananoparticles and their photocatalytic activity”, Journal of solid-state chemistry 177 (2004) 3375-3382.
13. K.Madhusudan Reddy,C.V.Gopal Reddy and S.V.Manorama,“纳米晶酶TiO的制备,表征和光谱研究GydF4y2Ba2GydF4y2Ba”,《固态化学杂志》,158(2001)180-186。GydF4y2Ba
14. Y.Zhao,C.Li,X.Liu,F.Gu,H.Jiang,W.Shao,L.Zhang和Y.He,“ Tio的合成和光学特性GydF4y2Ba2GydF4y2Ba纳米颗粒”yabo214,材料字母,61(2007)79-83。GydF4y2Ba
15. D-U.Lee,S-R.Jang,R.Vittal,J.Lee和K-J-Kim,“ CTAB促进球形金红石TioGydF4y2Ba2GydF4y2Ba颗yabo214粒及其在染料敏化的太阳能电池中的优势”,太阳能,82(2008)1042-1048。GydF4y2Ba
16. C.Y.Hu,S.L.Lo,C.M.Li和W.H.Kuan,“通过用表面活性剂进行电凝液量化过程处理化学机械抛光(CMP)废水”,《危险材料杂志》 A,120(2005)15-20。亚博网站下载GydF4y2Ba
17. H.Wang,P.Liu,X.Chang,A-Shui和L.Zeng“表面活性剂TIO的效果GydF4y2Ba2GydF4y2Ba纳米颗粒通yabo214过均质降水法”,粉末技术,188(2008)52-54。GydF4y2Ba
联系方式GydF4y2Ba
R.Vijayalakshmi and K.V. Rajendran
印度泰米尔纳德邦钦奈总统学院物理系。GydF4y2Ba
电子邮件:GydF4y2Ba[电子邮件保护]GydF4y2Ba
本文还以印刷形式发表在“材料和材料处理技术的进步”中,11 [2](2009)63-68。亚博网站下载GydF4y2Ba