2010年11月19日
J.P. Wiff, Y. Takatsuru and K. Matsumaru
版权所有;被许可人AZOM.com PTY Ltd.
This is an AZo Open Access Rewards System (AZo-OARS) article distributed under the terms of the AZo-OARS//www.washintong.com/oars.aspwhich permits unrestricted use provided the original work is properly cited but is limited to non-commercial distribution and reproduction.
Azojomo(ISSN 1833-122X)卷2010年11月6日
涵盖了主题
抽象的
Keywords
Introduction
Experimental
设置
Characterization Techniques
结果与讨论
结论
Acknowledgements
References
Contact Details
抽象的
Typical chemical mechanical polishing (CMP) pad dresser consists of diamond grains bound to a metallic substrate normally by a nickel electroplating layer. The main problem with traditional CMP pad dressers is the drop out of diamond caused by corrosion in the nickel plating layer. This work proposes to induce a chemical bonding between diamond and a titanium substrate by utilization of pulsed electric current sintering (PECS). One hundred diamond grains on titanium discs were PECSed at different sintering temperature and time. The number of retained grains after sintering increase with increase of sintering temperature or period. XRD shows TiC, TiB, Ti2N and TiN on the titanium surface. It is considered that TiC layer between diamond and titanium substrate is a key material for bonding of diamond grains. TiC layer of 3 µm was formed by diffusion of carbon in Ti.
Keywords
化学机械抛光(CMP),脉冲电流烧结,垫梳妆台,钻石,ttitanium
Introduction
在半导体行业中,硅和蓝宝石表面平坦度在广泛的电子设备中准确高性能起着重要作用。化学机械抛光(CMP)是将半导体晶圆的顶表面平衡的最常见方法之一,因为它以低成本提供了非常高的表面质量[1-4]。
During the fabrication of a CMP pad dresser, many diamonds are attached to a metallic surface usually by a nickel electroplating layer [4]. However, during dressing some diamonds can drop out from the pad dresser and generate damages on the substrate surface in form of scratches.
钻石在金属表面上的附着直接受抛光和敷料过程中使用的化学环境的影响,从而在钻石周围产生腐蚀并增加掉落。TIC,TIN和TIB已被广泛研究为针对不同应用的极端pH条件的有效障碍[5-7]。因此,预计他们在CMP垫梳妆台中的使用可以避免钻石掉落,从而改善了敷料性能。
脉冲电流烧结(PECS)也称为商业火花等离子体烧结(SPS)或血浆激活烧结(PAS),用作快速烧结方法(几分钟)来吸收各种材料[8]。亚博网站下载PECS方法提供了一种有效的工具,可在钻石和钛基板之间产生碳化物层的形成。通过化学反应将钻石和钛底物的键合预计将具有更强的锚定效果[9]。因此,CMP垫梳妆台是由PEC制造的。研究了烧结后的钻石晶粒的附着,以获得最小的TIC层,以产生更强的锚定效果。
Experimental
设置
one hundred diamond grains around 100 μm in size were mechanically incrusted on titanium discs of 20 mm in diameter and 5 mm in thickness. Afterwards, the titanium discs and diamonds were PECSed under vacuum (1 Pa) at different sintering temperatures and times.
当使用PEC时,将粉末样品压在电导性模具中,并在所有过程中施加脉冲电直流电到样品和死亡。内部产生的热量以高速率(每分钟数百个开尔文)增强了小颗粒的致密化,并将烧结时间减少到几分钟。yabo214
将钛圆盘引入石墨模具中,并被厚厚的硝酸硼(BN)粉末包围。如图1所示,将两个石墨层用作样品和熔炉之间的保护罩。
Figure 1.PEC中的样品设置。
使用PECS性能因子(PP)计算烧结后的钻石晶粒的附着,其定义为在PEC烧结后有效地附着在钛基板上的钻石晶粒的百分比:
Characterization Techniques
After sintering and dressing, all samples were characterized by: scanning electron microscopy (SEM, Keyence VE-7800) for calculating PP. Furthermore, X-ray diffraction (XRD, Shimadzu LabX XRD-600) was utilized for identification of the crystallographic phases.
结果与讨论
There are two parameters for controlling the PECS process: 1) sintering time and 2) sintering temperature. The PP factor was evaluated in samples sintered for 5 min. under 10 MPa and at different sintering temperatures as shown in Fig. 2.
图2。烧结后(PP)作为温度功能的钻石谷物保留率,10 MPa持续5分钟。
图2显示,在低烧结温度下,PP因子随着烧结温度的升高而迅速增加。PP的最大值在1300°C下实现,但是在高温下,预计钻石的高石像化以及CMP梳妆台工具寿命的强烈降低[10]。因此,在理想的情况下,烧结温度应降低到1000°C以下,但同时达到高PP值。
Fig. 3 shows the influence of sintering time on the PP value under 10MPa for different sintering temperatures. PP increases with increase of sintering period and is higher than that of a high sintering temperature.
图3。烧结后(PP)在10 MPa下的钻石晶粒保留率作为温度的功能。
Figs. 2 and 3 suggest that at sintering temperatures over 1000°C the PP value should increases. However, the graphitization of diamond should also reduce the tool life for this CMP pad dresser. Therefore, the PECS conditions for evaluating the dressing performance of this CMP dresser were established as following: 1000°C as sintering temperature, 10 MPa as applied sintering pressure, and 120 min. as sintering time under vacuum (1 Pa).
烧结后,钛表面上的不同晶相,即:tic,tib,ti2检测到N和TIN化合物(图4)。以下所有化合物都将被指定为“基于”,因为晶格参数的观察到很小的变化,表明某些包含在其晶体结构内。烧结后,未检测到金属钛衍射,表明在钛表面上含有硼,氮和碳的厚层的形成。
Figure 4.1000°C的烧结样品的XRD图案,10 MPa 30分钟。未检测到金属钛,证明了由钛上的基于TIC,TIB和TIN层组成的厚层的存在。
Fig.5 shows the influence of TiC layer thickness on the PP value. Thickness of TiC layer was estimated by carbon diffusion in TiC layer [11]:
Figure 5.Diamond grain retention rate after sintering (PP) as a functions of thickness of TiC layer which estimated by carbon diffusion in TiC layer.
其中χ,d t t r是抽动层的厚度,扩散系数,烧结期,烧结温度和气体常数。图5表明,钻石晶粒的保留量会随着抽动层厚度的增加而增加。3μm的TIC厚度对于保留尺寸约为100μm的几乎钻石颗粒是必需的。可以得出结论,可以估计烧结条件可以在钛磁盘上制造具有牢固粘合的CMP垫梳妆台。
结论
CMP pad was fabricated by a pulsed electric current sintering method for chemical reaction between diamond and titanium substrate to achieve a stronger anchoring effect.
在烧结过程中,在钻石和钛之间形成抽动层。抽动层是钻石晶粒的粘结材料。钻石晶粒的保留随着抽搐层厚度的增加而增加。要保留大小约100μm的几乎钻石颗粒,需要三μm的抽动层。
Acknowledgements
作者希望感谢日本政府通过教育,文化,体育,科学部21世纪卓越中心(COE)计划部分支持这项工作。亚博老虎机网登录
References
1. L. Chen和L. Sheng,“半导体制造的化学机械抛光(CMP)废水的电凝”,《化学工程杂志》,95 [1-3](2003)205-211。
2. H.亚博老虎机网登录
3。J. H. Liu, Z. J. Pei and G. Fisher, “ELID Grinding of Silicon Wafers: A literature review”, International Journal of Machine Tools and Manufacture, 47 [3-4] (2006) 529-536.
4. A.H. Tan和Y.C.Cheng,“ CMP浆料中钻石护发素的磨损 - 腐蚀特性”,Wear,262(2007)693-698。
5. B. F. Chen,W.L。Pan,G.P。Yu,J。Hwang和J.H.黄,“关于锡涂的AISI D2钢的腐蚀行为”,《表面与涂料技术》,111(1999)16-21。
6. Y. Cheng和Y. Zheng,“ PIII和沉积技术沉积的TI-50.6%AT%Ni合金的TIC,TIC和TICN涂层的表征”,Surface and Coatings Technology,201(2007)4909-4912。
7. F. Noli, P. Misaelides, A. Hatzidimitriou, E. Pavlidou and A. Pogrebnjak, “Investigation of the Characteristics and Corrosion Resistance of Al2o3/TiN Coatings”, Applied Surface Science, 252 (2006) 8043-8049.
8. M. Sato, M. Nanko, K. Matsumaru and K. Ishizaki, “Homogeneity in Sintering of Fine Ni-20Cr Powder by Pulsed Electric Current Sintering (PECS) Process”, Advances in Technology of Materials and Materials Processing Journal , 8 [1] (2006) 101-108.
9. K. Matsumaru,A。Takata和K. Ishizaki,“多孔铸铁粘合钻石砂轮”,J. of Ceramics Processing Research,3 [2](2002)80-81。
10. T. Harris,E。Brookes和C. Taylor,“温度对多晶立方硼硝化硼切割工具材料的硬度的影响”,《国际难治金属和硬材料杂志》,22 [3-4](2004)(2004)亚博网站下载105-110。
11. Sarian,S。,“ TIC中碳的扩散”,《应用物理学杂志》,39(1968)3305-3310。
Contact Details
J.P. Wiff
National Institute of Advanced Industrial Science and Technology (AIST)
2266-98 Anagahora,Shimoshidami,Moriyama-Ku,Nagoya 463-8560,日本
Y. Takatsuru和K. Matsumaru
纳戈卡技术大学
Nagaoka, Niigata 940-2188, Japan
This paper was also published in print form in "Advances in Technology of Materials and Materials Processing", 10[2] (2008) 63-66.