2006年2月20日
Elizaveta Galitckaia / Shutterstock
通常,当人们考虑显微镜时,电子或光学显微镜就会想到。这样的显微镜通过将电磁辐射(例如电子或光子)在其表面上引导,从而产生对象的放大图像。
Electron and optical microscopes can effortlessly produce two-dimensional magnified images of the surface of an object, with a magnification as large as 1000X for an optical microscope, and as large as 100,000X for an electron microscope.
尽管这些显微镜是强大的工具,但所采用的图像通常位于对象表面的水平面。这样的显微镜不能直接提供物体表面的垂直尺寸或表面特征的深度和高度。
建于1980年代中期的原子力显微镜(AFM)使用尖锐的探针扩大表面特征。AFM使能够对物体的表面地形图像高达1,000,000倍的物体的表面地形图像。
AFM的放大倍数在三个维度,水平X-Y平面和垂直Z尺寸中进行。隧道显微镜的发明者Binnig和Rohrer同意,这种强大的方法根源在手写笔伪造者中。
Stylus Profilers
对象的垂直表面特征的放大(即,水平平面引起并沿垂直方向传播的那些特征)传统上是由手写笔涂纸测量的。
Invented by Schmalz in 1929, this profiler utilized an optical lever arm to track the motion of a sharp probe positioned at the end of a cantilever. A magnified profile of the surface was produced by recording the stylus motion on a photographic paper. This type of “microscope” produced profile “images” with a magnification of >1000X.
A typical issue with stylus profilers was the potential bending of the probe from collisions with surface features. Such “probe bending” was due to horizontal forces on the probe caused when the probe came across large features on the surface. This issue was first looked at by Becker in 1950 and later by Lee.
贝克尔(Becker)和李(Lee)提出,探针可以从表面上方的空位置振荡以与表面接触。贝克尔说,当使用这种振动轮廓技术来测量图像时,图像的细节将由探针的清晰度确定。
1971年,罗素·杨(Russell Young)建立了一种非接触式的手写笔伪造者,称为“地形师”。他使用了这样一个事实,即表面和锋利金属探针之间的电子场发射电流很大程度上取决于探针样品的探测样品的距离。
地形仪中的探针直接安装在用于在表面上方垂直方向上移动探针的压电陶瓷上。然后使用跟踪电子发射的电子反馈电路来移动压电陶瓷,从而保持探针样品间距。
Then, with piezoelectric ceramics, the probe was used to scan the surface in the horizontal (X-Y) dimensions. By tracking the X-Y and Z position of the probe, a 3D image of the surface was created. The resolution of Young’s instrument was regulated by the vibrations of the instruments.
扫描隧道显微镜和原子力显微镜
1981年,IBM科学家能够利用Young最初显示的技术来创建扫描隧道显微镜(STM)。Binnig和Rohrer表明,通过调节仪器的振动,该仪器与Young的地形仪非常相似,可以跟踪样品和尖锐探针之间的电子隧穿电流。
Since electron tunneling is relatively more sensitive than field emissions, the probe could be used to scan very near the surface. The results were amazing; Binnig and Rohrer could see separate silicon atoms on a surface. Although the STM was thought to be fundamental progress for scientific research, it had few applications, as it worked only on electrically conductive samples.
Profilers underwent a major development in 1986 when Binnig and Quate demonstrated the AFM. Using an ultra-small probe tip at the end of a cantilever, the AFM could attain very high resolutions.
起初,悬臂的运动是用STM提示跟踪的。但是,很快就会理解,可以使用接近施马尔斯最初使用的技术来量化悬臂的运动。Binnig和Quate在他们的论文中表明,可以通过振动表面上方的悬臂来增强AFM。
1987年,Wickramasinghe提供了AFM中振动悬臂技术的首次实践证明。他使用光学干涉仪来计算悬臂振动的振幅。
Using this optical method, oscillation amplitudes between 0.3 nm and 100 nm were realized. Upon each oscillation, the probe comes into close contact with the surface, and Wickramasinghe was able to detect the materials on a surface. The variances between photo-resist and silicon were easily observed.