编辑功能

锂离子电池回收的A至Z

本文提供了对锂离子电池的终止评估,重点是回收不断增长的锂离子电池,以朝着可持续且循环的电池使用和重复使用方向努力。

电池,电池,锂,锂离子,回收,阴极,寿命,libs

图片来源:越南股票照片/shutterstock.com

由于对消费电子产品的需求不断增长,电动汽车和现场储能解决方案的采用不断增长,锂离子电池(LIB)继续受到欢迎。

LIBS的使用增加给Lib生产所需的原材料带来了严重的挑战。亚博网站下载LIBS中使用的一些元素,例如锂,钴和石墨稀缺,目前尚未大量开采,或者仅在少数几个贸易政策可以限制可用性和影响价格的国家中开采。

不断增长的用户的有效回收可以提供降低LIB的环境影响并采购可持续高价值材料的途径,这些材料可用于生产新电池。亚博网站下载

After their successful commercialization 30 years ago, LIBs have become power sources of choice for portable electronic devices and one of the most promising solutions for energy storage in electric vehicles and stationary devices, such as Tesla's Powerwall. This widespread use in a multitude of industrial and domestic applications combined with the projected global demand for energy storage solutions, primarily driven by the growth of the electric vehicles market, has accelerated the need for an efficient recycling strategy more urgently than ever. This is especially important considering the scarcity of some raw materials used in LIBs.

LIB Types and Material Composition

A single LIB cell consists of a cathode, an anode, a separator that also contains the electrolyte, and robust housing. Many cells, interconnected in series, in parallel, or a combination of the two, are usually assembled into battery modules with the desired voltage and capacity. Depending on the requirements of the intended application, LIBs may vary in shape (consisting of cylindrical or pouch cells), size, capacity, and configuration. However, the most widely accepted classification of the LIB types is based on the cathode material.

第一个商业液化物利用锂钴氧化物(licoo2)作为阴极材料,石墨阳极和导电聚合物作为电解质。尽管石墨仍然是主要的阳极材料,但阴极组成经历了重大变化。LICOO2相对简单地产生并导致电池的稳定排放能力。

However, the relatively high cost and environmental and safety issues concerning Co and Li mining led to the commercialization of alternative cathode materials. At present, the most widely used cathode materials include mixed oxides of Li, Ni, Co, Mn, and Al or lithium iron phosphate (LiFePO4). Many of these elements are classified as critical raw materials and emphasize the need to re-introduce end-of-life batteries and their components back into the economic cycle and reduce the need for primary raw materials.

增加全球生产LIB会带来环境挑战

The primary LIB manufacturing facilities are located in China, Japan, South Korea, and the United States. The three Asian countries are the major producers of LIB-specific components such as electrodes, separators, and electrolytes, and manufacture more than 80% of the global LIB supply.

由于有关电子废物和寿命终止自由液体的环境法规,尤其是在大多数国家 /地区尚未完全开发或实施,因此目前大多数这些电池最终都陷入了垃圾填埋场,而将一小部分的用过的Libs发送给了垃圾填埋场。现有的回收设施。目前,欧洲收集和回收的电子废物的比例为42.5%,亚洲为11.4%,在美洲为9.4%。

Besides, the variety of LIB sizes, configurations, and cell chemistries present a major challenge to current recycling methods as not all processes are economically viable for the recycling of any battery type.

LIB回收的激励措施

With more proactive regulations, an increasing supply of spent batteries, and innovations in recycling technologies, end-of-life batteries could supply a significant fraction of the materials needed for the manufacturing of new LIBs. Newly-developed regulations, such as the EU's Battery 2030+ roadmap, aim to define the responsibilities of battery manufacturers, users, and recyclers.

电池,电池,锂,锂离子,回收,阴极,寿命,libs

Image Credit: Artem Oleshko/Shutterstock.com

Battery manufacturers will be required to provide durability and performance data for their products and are responsible for the provenance of battery materials. These forthcoming regulations would effectively create “battery passports” which would allow end-users to identify the battery type and composition and to know where the materials come from, and their environmental impacts, so that the reuse and recycling of the LIBs can be monitored. The new rules also outline target efficiencies and material recovery rates for different recycling processes.

自由回收的经济学

The economics of recycling mostly depends on the LIB chemistry, raw material prices on the market, and the processing cost, which is expected to decrease with the expansion of the recycling capacity. The variety and complexity of LIB chemistry impede to some extent the efforts to establish a streamlined recycling process suitable for all kinds of LIBs.

例如,对电动汽车电池中较高能量密度的需求将电池的开发转移到使用具有较高镍含量的阴极,而降低电池成本的愿望则有利于低价值锂铁磷酸锂阴极。这种多样性会影响可以从寿命末库中提取的价值。最大的价值可以从具有高钴含量的阴极中提取。这样的电池通常用于消费电子产品,并解释了支出的LIB的部分减少。

Current State of LIB Recycling

全球有五十多家公司的流程,其回收容量约为40万吨。大多数公司在中国和韩国运营,其次是欧盟,日本,加拿大和美国。改善LIB的回收技术是一项持续的努力,当今的回收远非成熟。

End-of-Life LIB Pre-Treatment Processes

为回收利用准备LIB涉及两个主要过程 - 放电和拆卸电池模块(包括去除主要组件,例如电缆,框架,电子设备等)。电池拆除后,组件基于其不同的物理特性(包括粒度,密度,电导率,磁性特性等)进行机械处理和分离。

电池在拆卸之前已排放,以确保人员安全并消除电击和火灾的风险。可以通过不同的方法,例如热处理,基于盐水的浴室,通过外部电路进行控制或使用液氮来进行排放。基于盐水的排放是工业环境中最可取的方法,因为它是一种足够安全的方法来排放和稳定各种类型的高能密度细胞。

机械预处理

接下来,支出的LIB受到多阶段的机械预处理的约束,涉及粉碎,压碎,冲击碎片化,磁分离,浮选和其他过程。此步骤的目的是将电池分解为不同的回收流。

A particular emphasis is placed on the separation of the metallic particles (casing, conductors) and the concentration of the so-called black mass, which is the mixture of cathode and anode active materials. The black mass is the most valuable LIB component and the mechanical pre-treatment is optimized for its maximum recovery and separation. Usually, an inert atmosphere (CO2在压碎过程中使用氮)。

Thermal Pre-Treatment

Thermal pre-treatment methods enable safe deactivation of the combustible components of the LIB electrolyte. At the same time, the battery is discharged, while the conductive carbon components and organic binder materials decompose (at temperatures above 600 °C).

在此步骤中选择适当的温度范围可促进锂和其他金属的恢复。但是,在此过程中,所有塑料组件和电解质都会丢失。另外,无氧的热解可以使有机材料转化为较低的分子化合物,并通过恢复恢复。亚博网站下载

高价值LIB组件的回收方法

高温应压使用加热来将电池材料中使用的金属氧化物转换为金属或金属合金。亚博网站下载预处理后,电池材料在还原环境(真空或惰性气气气氛)中燃烧,以将金属氧化物亚博网站下载转换为含有混合金属合金(取决于电池组成)CO,NI,CU,FE和非 -包含Li和Al的可回收炉渣。

Pyrometallurgical methods require simpler pretreatment methods (usually shredding or crushing) to prepare batteries for recycling and can accommodate LIBs of differing compositions, shapes, and sizes. Some pyrometallurgical methods can recycle Li, but overall these methods are most effective for extracting and recycling high-value metals such as Co.

Volkswagen Electric Car Battery Recycling Plant

视频来源:YouCar/YouTube.com

水透明方法使用水溶液将金属与LIB分开。经过预处理的电池材料(先前已移除的AL和CU导亚博网站下载体)最常用H提取2SO4和h2O2, although HCl, HNO3,也可以使用包括柠檬酸和草酸在内的有机酸。一旦将金属提取到溶液中,它们就会使用pH滴定选择性地作为盐聚集,或使用含有二烷基磷酸盐或磷酸盐的有机溶剂提取。

目前,水力和高原铝方法主导了阴极材料中金属的回收。亚博网站下载全球趋势是将大多数回收操作转移到使用水透明术方法上,因为它们能够恢复大量的电池组件并达到非常纯净的金属盐。

回收下一代LIB的未来发展

可以促进有效循环电池经济发展的一个重要概念是回收的设计。该概念的重点是考虑电池初始设计阶段中最终对电池电池进行回收处理。这种方法将使电池完全自动化,并最大程度地减少预处理成本。

Streamlined battery designs that allow facile disassembly would also make the direct recycling methods much more effective. Currently, the direct recycling methods involve the reuse of end-of-life LIBs from electric vehicles in stationary applications. Such an approach requires battery type classification and determination of the charge state and the residual capacity of the recycled batteries.

通过使用标准化的电池设计和特定的电池化学分配,可以通过将阴极材料暴露于具有高锂含量的部分并将其重新包装到新的电池电池中,从而可以进行电池的再生。

In addition, the use of novel methods, such as high-voltage treatment or the use of supercritical CO2,将允许更有效的材料分离。反过来,这将提高碳材料的回收效率(例如用阳极中使用的石墨和碳黑色)和电解质。超临界液体介质提取已经证明电解质和粘合剂的回收率相对较高。

高效且可持续的回收过程的快速发展是将寿命末及其组件重新引入经济周期并减少原材料的需求的唯一选择。亚博网站下载

参考和进一步阅读

Bird, R.,et al.(2022)锂离子电池回收的调节环境。ACS能量信, 7(2), 736-740. Available at:https://pubs.acs.org/doi/10.1021/acsenergylett.1c02724

Baum,Z。J.,et al.(2022)锂离子电池回收 - 技术和趋势的视图。ACS能量信, 7 (2), 712-719. Available at:https://pubs.acs.org/doi/10.1021/acsenergylett.1c02602

Neumann, J.,et al.(2022)锂离子电池的回收 - 最新的现状,循环经济和下一代回收。ADV。能源母校。2102917。https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102917

Windisch-Kern, S.,et al.(2022) Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies.Waste Management,138,125-139。可用网址:https://www.亚博老虎机网登录sciendirect.com/science/article/pii/s0956053x21006267?via%3dihub

Hu, Qiushi and Xu, Linghong (2021) An overview on Lithium-ion batteries recycling processes.物理杂志:会议系列, 1885. Available at:https://iopscience.iop.org/article/10.1088/1742-6596/1885/3/032031

Miao, Y.,et al.(2022)全球电力锂离子电池和关键金属回收的概述。危险材料杂志亚博网站下载,145,127900。https://www.亚博老虎机网登录sciendirect.com/science/article/pii/s0304389421028697?via%3dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of theTerms and conditionsof use of this website.

Cvetelin vasilev

写的

Cvetelin vasilev

Cvetelin vasilev拥有物理学的学位和博士学位,并正在谢菲尔德大学(University of Sheffield)从事生物物理学家的职业。他拥有20多年的研究科学家经验,是高级显微镜和光谱技术的应用专家,以更好地了解“软”复杂系统的组织。Cvetelin在聚合物科学,生物物理学,纳米制作和纳米植物学领域的同行评审期刊(17)中拥有40多个出版物。亚博老虎机网登录

引用

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    vasilev,cvetelin。(2022年2月24日)。锂离子电池回收的Z到Z。azom。于2022年4月12日从//www.washintong.com/article.aspx?articleId=21370检索。

  • MLA

    vasilev,cvetelin。“锂离子电池回收的A到Z”。azom。12 April 2022. .

  • 芝加哥

    vasilev,cvetelin。“锂离子电池回收的A到Z”。azom。//www.washintong.com/article.aspx?articleId=21370。(accessed April 12, 2022).

  • 哈佛大学

    vasilev,cvetelin。2022.锂离子电池回收的A至Z。Azom,2022年4月12日,https://www.washintong.com/article.aspx?articleId=21370。

Tell Us What You Think

您是否有评论,更新或您想添加到本文中的任何内容?

Leave your feedback
Your comment type
Submit