数字脉冲力模式(DPFM)为纳米级材料研究提供了新的见解。亚博网站下载在AFM成像过程中,它可以存储完整的尖端样本交互,从而使用户能够与地形结合记录能量和机械性能。
However, extracting real physical properties from AFM measurements is often a challenging task because of the changes in the conditions during a measurement and continuous changes in the shape of the cantilever tip, etc. The inclusion of a reference in the imaging area for material characterization can compensate for all these uncontrollable parameters.
Nanoscale Characterization of Rubber Compounds with DPFM
本文介绍了纳米级表征在两种橡胶化合物中,它们被分析为与PMMA结合的聚合物混合物的薄膜。薄膜是通过玻璃基板上聚合物溶液的自旋涂层而形成的。图1说明了玻璃基板上SBR-PMMA和SBS-PMMA的薄膜的地形。
Figure 1.聚合物混合物的地形:顶部:SBR-PMMA(图像尺寸7x7x0.03µm)3) Bottom: SBS-PMMA (image size 10x10x0.08µm3)。
共聚焦拉曼显微镜测量结果表明,较高的地形特征代表PMMA。在图2的底部图中分别描绘了从SBR-PMMA混合物中从PMMA和SBR中获得的典型脉冲力曲线,并从SBS-PMMA混合物中的PMMA和SBS中描绘。
Figure 2.Typical Pulsed Force Curves obtained from the two polymer films.
记录的粘附图与图1所示的地形图像一起记录,如图3所示。
Figure 3.Adhesion maps of the thin film of SBR-PMMA (left) and SBS-PMMA (right)。
The difference in adhesion forces of the two polymer blends was estimated as shown below:
Δ A1= asbr- APMMA= kS(Vad(SBR)-Vad(PMMA))= 10±3 nn(1)
Δ A2= aSBS- APMMA= kS(Vad(SBS)-Vad(PMMA))= 11±3 nn(2)
Where, cantilever spring constant k = 2.8N/m; Sensitivity S = 200nm/V; and Vad(SBS),vad(SBS), and Vad(PMMA)are the measured voltages on the adhesion outputs of the DPFM electronics. This data is insufficient to corroborate the blending of the two different polymers with PMMA. The stiffness maps for the two thin films are depicted in Figure 4.
图4。Stiffness maps of the thin film of SBR-PMMA (left) and SBS-PMMA (right)。
两种聚合物混合物的刚度差异如下:
Δ S1= sPMMA-ssbr= kS(Vstiff(PMMA)-Vstiff(SBR)) / Δ z = 2.5 ± 0.3 N/m (3)
Δ S2= sPMMA-sSBS= kS(Vstiff(PMMA)-Vstiff(SBS)) /δz = 0.6±0.3 n / m(4)
其中,Δz代表尖端穿透深度;和vstiff(PMMA),vstiff(SBR), and Vstiff(SBS)are the measured voltages on the stiffness output of theDPFM electronics。由于两种薄膜由参考PMMA组成,因此公式3和4中估计的刚度差与SBR和SBS的各种刚度特性相关。刚度比(δs1/Δ S2)4表明SBR比SBS柔软4。
此信息已从WITEC GMBH提供的材料中采购,审查和改编。亚博网站下载
有关此消息来源的更多信息,请访问witec gmbh。